
J. Fluid Mech. (2007), vol. 587, pp. 217–234. c© 2007 Cambridge University Press

doi:10.1017/S002211200700732X Printed in the United Kingdom

217

Viscous flow past a flexible fibre tethered at its
centre point: vortex shedding

LUODING ZHU
Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis

Indianapolis, Indiana, USA
lzhu@math.iupui.edu

(Received 7 April 2006 and in revised form 26 April 2007)

Motivated by a laboratory experiment reported in Alben, Shelley & Zhang (Nature,
vol. 420, 2002, p. 479), we performed simulations of an elastic fibre anchored at
its centre point and immersed in a flowing viscous incompressible fluid by the
immersed boundary (IB) method. We focus on the influence of some dimensionless
parameters on vortex shedding from the fibre for Re in the range [30, 800]. Three
sets of simulations were designed to investigate the influence of Reynolds number Re,
dimensionless fibre flexure modulus K̂b, and dimensionless fibre length L̂ on vortex
shedding. According to the simulation results, Re, K̂b, and L̂ each has a significant
influence on the structure of shed vortices. However, Re has little influence on the
vortex shedding frequency. With the increase of dimensionless bending modulus,
the dimensionless vortex shedding frequency (fvs) and the critical Reynolds number
(Rec) decrease approximately as power-law functions. Both fvs and Rec increase
approximately linearly as dimensionless fibre length increases.

1. Introduction
Vortex shedding from an object immersed in a flowing fluid is an important

and interesting topic and has been extensively studied experimentally, analytically
and computationally (Sarpkaya 1979; Griffin & Ramberg 1982; Bearman 1989;
Parkinson 1989; Williamson & Govardhan 2004). Most of the work has focused on
vortex shedding from a rigid body. For instance, vortex shedding from a circular
cylinder (tube) was studied by Abarbane et al. (1991), Nitsche & Krasny (1994), and
Wang & Zhou (2005); from a sphere by Lee (2000); and from an (inclined) flat plate
by Sarpkaya (1975) and Krasny (1990). Zhu & Peskin (2002, 2003) studied numerically
the vortex shedding from elastic flapping filaments interacting with a flowing viscous
fluid, and Jung et al. (2006) studied experimentally the vortex shedding from a flexible
flapping rubber loop in a flowing soap film. Here we report our simulation of vortex
shedding from a flexible fibre with its centre point tethered (otherwise unrestricted)
in a two-dimensional flowing viscous incompressible fluid by the immersed boundary
(IB) method (Peskin 1977; Peskin & McQueen 1996; Peskin 2002; Zhu & Peskin
2002).

The direct motivation of our work is a laboratory experiment reported in Alben,
Shelley & Zhang (2002, 2004) and Alben (2004). The experiment used a flowing
soap film (thickness 1–3 µm) as a flow tunnel. A flexible glass fibre (diameter 34 µm)
was introduced with its middle point anchored at the centre of the flow channel
and constrained nowhere else. The Reynolds number ranged from 2000 to 40 000 in
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the experiment. Alben et al. (2002, 2004) investigated the drag reduction induced by
self-similar bending and streamlining of the fibre. Very recently, Zhu & Peskin (2007)
computed the averaged drag of an elastic fibre immersed in a two-dimensional flowing
incompressible viscous fluid at intermediate Reynolds numbers. One of the results was
that when the inflow speed was sufficiently high, the flow became unsteady. Vortex
shedding from the fibre became evident, the fibre vibrated and the drag coefficient
versus time (Cd–t) curve oscillated.

This work investigates the influence of some dimensionless flow parameters on the
vortex shedding. The flowing soap film was modelled by a two-dimensional viscous
incompressible laminar channel flow, and the flexible fibre was simulated by a one-
dimensional linear elastic curve. The fibre was assumed to be totally immersed and
neutrally buoyant in the flowing fluid. The mathematical formulation and numerical
method are based on the FFT version of the IB method (Peskin & McQueen
1996; Peskin 2002; Zhu 2001). This work investigates the vortex shedding at lower
Reynolds numbers (30–800), focusing on the influence of the Reynolds number (Re),
dimensionless fibre flexure modulus (K̂b), and dimensionless fibre length (L̂) on the
vortex shedding.

2. Governing equations
Using standard notation (u for velocity, ρ for mass density, p for pressure, x

for Eulerian spatial coordinates, t for time, and α for the Lagrangian coordinate
which was chosen as the fibre arc-length at the initial configuration and was frozen
throughout a simulation), the equations governing the motion of both the fluid and
the fibre (neutrally buoyant) in dimensionless form are as follows (the IB formulation):

Du(x, t)

Dt
+ ∇p(x, t) =

1

Re
�u(x, t) + f (x, t) − Fr−1u(x, t) − g, (1)

∇ · u(x, t) = 0, (2)

f (x, t) =

∫
F(α, t)δ(x − X(α, t)) dα, (3)

F(α, t) = − ∂e

∂ X
= −∂(es + eb)

∂ X
, (4)

es =
1

2L
K̂s

∫ (∣∣∣∣∂ X(α, t)

∂α

∣∣∣∣ − 1

)2

dα, (5)

eb =
1

2L
K̂b

∫ ∣∣∣∣∂
2 X(α, t)

∂α2

∣∣∣∣
2

dα, (6)

∂ X
∂t

(α, t) = U(α, t), (7)

U(α, t) =

∫
u(x, t)δ(x − X(α, t)) dx. (8)

Here D/Dt = ∂/∂t + u · ∂/∂x is the material derivative, the vector g = (0, F r−1)T

and Fr is the Froude number. Re is the Reynolds number, e is the fibre elastic
potential energy density, and es and eb are fibre elastic energy density associated
with compression/stretching and bending, respectively. K̂s is the dimensionless

stretching/compression coefficient, K̂b is the dimensionless flexure modulus, and L

is the fibre total length. See table 2 below for definitions of these non-dimensional
quantities and their values used in the simulations.
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Figure 1. The initial velocity and inflow velocity profiles for inflow speed 220 cm s−1. The
x-axis represents the flow tunnel width direction. The y-axis is the second component (i.e. v(x))
of the velocity u(x, 0). (Note v is a function of x only here and the first velocity component is
zero.) The inflow velocity profile is flat on most of the channel except near the left and right
boundaries; this is because of the air resistance. This profile is imposed as the initial condition
and inlet/outlet boundary conditions for velocity.

Equations (1) and (2) are the incompressible viscous Navier–Stokes equations
governing the motions of both the fluid and the fibre. The term −Fr−1u is the
air resistance, where the coefficient happens to be the reciprocal of the Froude
number. (The dimensional air resistance coefficient, λ, was determined by the equation
λ|V0| = ρ0g. Here V0 is the inflow speed, ρ0 is the fluid mass density†, and g is the
gravitational acceleration constant. If ρ0, V0 and L are chosen as reference quantities
to non-dimensionalize the IB formulation, the air resistance term −λu becomes −g∗u∗,
where the quantities with a ∗ denote their corresponding dimensionless equivalent. It
turns out that g∗ =Fr−1 in our case.) Equation (7) updates the position and shape of
the fibre. The fibre velocity U(α, t) is interpolated by (8) from the velocity of the fluid.
From the fibre configuration X(α, t) the elastic potential energy density (e) is calcu-
lated via (5) and (6) and the Lagrangian force density F(α, t) is computed through (4).
The immersed boundary force f (x, t) on the right-hand side of (1) is calculated using
(3). Equations (1)–(8) constitute a nonlinear system of integral-differential equations
which depicts the motions of the viscous fluid and the elastic fibre. The system is
completed by imposing appropriated initial and boundary conditions. The initial velo-
city was the steady solution to the two-dimensional stationary channel flow under the
action of gravity and air resistance in the absence of the fibre. See figure 1 for a typical
initial velocity profile. The initial velocity profile was imposed on the inlet and outlet.
The velocity was zero on the two side boundaries. The fibre middle point (X(sc, t),
where sc is the Lagrangian coordinate for the middle point) was tethered at a fixed
Eulerian point (x0, y0) by a virtual spring with the same stiffness as the inextensible
fibre itself. It was found that X(sc, t) was almost constant in all simulations.

† ρ is the mass density of the fluid–fibre system, ρ0 is the mass density of the fluid. For a neutrally
buoyant immersed structure as in our case, ρ = ρ0.
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Inflow speed (V0) 50–300 cm s−1

Fluid kinematic viscosity (ν) 1–22 cm2 s−1

Fluid density (ρ0) 3 × 10−4 g cm−2

Fibre length (L) 1–5 cm
Fibre flexure modulus (Kb) 0.28–103 erg cm
Compression/stretching coeff (Ks) 2.4 × 106 dyn cm−1

Gravitational acceleration (g) 980 cm s−2

Width of the film (W ) 2.0–9.0 cm
Height of the film (H ) 18 cm

Table 1. Parameters used in the simulations.

Name Definition Range

Reynolds number (Re) V0L/ν 30–800
Froude number (Fr) V 2

0 /(gL) 3.09–91.84

Filament length (L̂) L/W 0.11–0.8

Dimensionless flexure modulus (K̂b) Kb/(ρ0V
2
0 L3) 2.89 × 10−4–0.1037

Dimensionless stretching coeff (K̂s) Ks/(ρ0V
2
0 L) 1.8 × 104–1.25 × 107

Table 2. Non-dimensional parameters used in the simulations. For the meanings of the
symbols used in the definitions, see table 1.

3. Simulation results
The above nonlinear system of integral-differential equations was discretized on a

non-staggered uniform fixed Eulerian grid. The backward Euler method was used for
time derivatives and centre differencing was used for spatial derivatives (both gradient
and divergence operators). The skew-symmetrical scheme was used for the con-
vection term and the nonlinearity therein was removed by using the velocity at the pre-
vious time step. The immersed boundary force f was treated explicitly. The resultant
linear algebraic system with constant coefficients was solved by the discrete fast
Fourier transform (DFFT). The dimensionless time-step size was �t = 10−4. The
spatial grid size was 256 × 512. See Peskin & McQueen (1996) and Zhu (2001) for the
details of the discretization and how the algebraic system was solved by the DFFT.

The parameters (dimensional) used in our simulations are tabulated in table 1.
Some parameters remained fixed throughout all the simulations reported here, and
their values (as in table 1) will not be stated again for each simulation reported
below. These include fluid density (ρ0), gravitational acceleration constant (g),
compression/stretching coefficient Ks , and height (H ) of the computational domain.

In our simulations we used the values of all the dimensional parameters in the
laboratory experiment except the fluid viscosity and the channel width. The viscosity
is approximately 100 times greater than in the experiment which causes the Reynolds
numbers in our simulations to be smaller by approximately two orders of magnitude.
The channel width was fixed to be 9 cm in the experiment. In the simulations to
investigate the influence of dimensionless fibre length, the channel width was varied
from 9 cm to 2 cm. (Note that varying the fibre length causes changes not only in
L̂, but also in Re and K̂b. See table 2.) For all other simulations in this paper, the
channel width was fixed to be 9 cm (the experimental value). The values of all the
other dimensional and dimensionless parameters are within the experimental ranges.

In addition to the Reynolds (Re) and Froude numbers (Fr), our elastic-fibre–fluid
problem (fibre neutrally buoyant in fluid) has the following other non-dimensional
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parameters: the dimensionless fibre flexure modulus (K̂b), the dimensionless fibre
length (L̂), and the dimensionless compression/stretching coefficient (K̂s). See table 2
for their definitions and values used in our simulations. In general it is expected
that the vortex shedding and drag coefficient are outcomes of the interplay of these
dimensionless quantities.

The fibre physical compression/stretching coefficient Ks was chosen such that the
fibre was almost inextensible in all simulations: the relative increase and decrease in
fibre length was less than 0.25 %. Even though K̂s varied with V0 and L, we assumed
that the influence of K̂s on the fluid–fibre problem was not important because it
was very large in each case. The fibre mass density has been found to play no
important role in the fibre drag coefficient (Zhu & Peskin 2007). Therefore the fibre
was assumed to be neutrally buoyant in the fluid. Also, no significant influence of the
Froude number Fr on the vortex shedding and fibre drag was expected. Therefore,
the influence of K̂s and Fr on vortex shedding will not be discussed, and only that of
Reynolds number, dimensionless flexure modulus and dimensionless fibre length will
be addressed explicitly.

To isolate the effect of Reynolds number, a series of simulations with varying fluid
kinematic viscosity was performed. Note that only the Reynolds number varied from
simulation to simulation throughout the series. All the other dimensionless parameters
were constant. An analogous series of simulations was performed to single out the
influence of the dimensionless flexure modulus. In this series only the dimensional
flexure modulus (Ks) varied. Therefore only K̂b varied throughout this series of
simulations. The third series of simulations was run to show the influence of the
dimensionless fibre length, with only the channel width W being varied in this series.

The instantaneous drag (D) the fibre experiences is computed the same way as
in Zhu & Peskin (2007). The drag coefficient is defined as Cd = D/( 1

2
ρ0V0

2L). A
time-averaged drag coefficient C̄d is defined as C̄d = D̄/( 1

2
ρ0V0

2L). Here D̄ is the
time-averaged drag which is computed over N equally spaced instants between times
Tqs and Te. Here Tqs is some time after the initial transition dies out and the fibre
reaches a small-amplitude oscillation state (‘quasi-steady’ state for short). Tqs =10
for this work. The simulation terminal time Te and the time spacing between two
neighbouring instantaneous drag computations Ts are chosen arbitrarily. In this work
Ts = 0.05, and Te =24–30.

The remainder of this section is structured as follows. First the influence of Re on
vortex shedding and drag coefficient is discussed. Then follows the influence of K̂b.
The third part addresses the influence of the dimensionless fibre length.

3.1. Influence of Reynolds number

To investigate the influence of Re, a series of simulations with different kinematic
viscosity ν was performed. The fluid kinematic viscosity ν ranged from 1 to 22 cm2 s−1.
The corresponding Re ranged from 30 to 800. The other parameters used in this
series of simulations were as follows: L =3.3 cm, V0 = 200 cm s−1, Kb = 2.8 erg cm.
The values of dimensionless parameters were: K̂b = 6.5 × 10−3, L̂ = 0.37, Fr = 12.37,
K̂s =6.1 × 104. Four typical simulation results are shown in figure 2. In this figure,
the top panels plot the instantaneous positions of fluid markers (used to visualize the
fluid motion) at time T =24 (dimensionless). The markers were released on the inlet
boundary periodically. They were massless and moved with the fluid. Their velocity
was interpolated from that of the fluid exactly as the fibre velocity was computed. The
lower panels plot the corresponding vorticity contours (for visualization of the vortical
field) at the same time instant. These four typical simulations show the influence of



222 L. Zhu

(a) (b) (c) (d)

Figure 2. Visualization of the flow and vortical field at four different Reynolds numbers at
dimensionless time 24. The upper panels are the instantaneous positions of fluid markers at
four different instants and the lower panels are the vorticity contours at corresponding time.
The Reynolds number is (a) 82.5, (b) 165, (c) 330, (d) 660.

the Reynolds number on vortex shedding. Vortex shedding is not observed when
the Reynolds number Re � 155. When the Reynolds number is around 165, vortex
shedding starts to appear. With the increase of Re the vortex shedding becomes more
apparent and intensive. The wake zone behind the fibre widens. The vortices shed
become nearly perpendicular to the mainstream flow from being nearly aligned with
the flow. (A shed vortex can be roughly approximated as an ellipse. The ellipse’s long
axis is used to determine whether the vortex is perpendicular to or aligned with the
mainstream direction.)

Figure 3 demonstrates the influence of Re on the motion of the fibre and the
drag coefficient Cd for the above four typical simulations. The upper panels plot Cd

versus time; the lower panels plot the fibre position and shape for the corresponding
case. Dotted lines are used for t � Tqs and solid lines for t � Tqs . The thickness of
the solid dark line indicates the range of oscillation. The fibre vibrates within this
range after Tqs . From figure 3 we can see that with the increase of Reynolds number,
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Figure 3. The drag coefficient versus dimensionless time and position of the fibre at four
different Reynolds numbers. The upper panels plot the drag coefficient as a function of time
and the lower panels plot the corresponding position of the fibre. The dotted and solid lines
are the fibre positions before and after it reaches the ‘quasi-steady’ state, respectively. The
thickness of the solid lines (many lines overlap) represents the fibre oscillation range. The
Reynolds number Re is (a) 82.5, (b) 165, (c) 330, (d) 660.

the opening of the parabola (fibre positions) widens and the fibre oscillation range
increases (the dark line thickens). However, the drag coefficient of the fibre seems to
be quite insensitive to the Reynolds number within the range 200 to 800. The drag
coefficient-versus-time curves (Cd–t curve) look quite similar to each other (notice
that the curve for Re = 82.5 is slightly above the other three). One might expect that
the Cd–t curve would becomes more oscillatory with the increase of Reynolds number
as a consequence of intensified fibre vibration (probably induced by enhanced vortex
shedding). But according to our simulations, this is not the case. The drag coefficient
Cd versus Re is given in figure 4 for Reynolds number range [30, 800]. It is seen
that Cd is roughly constant for Re between 200 and 800, but when Re gets smaller
than approximately 200, the drag coefficient begins to increase, first slightly and then
rapidly. It seems that the increase of shape drag is offset well by the decrease of
friction drag as Re increases in the range (200, 800). When Re become sufficiently
small, the increase of friction drag starts to dominate and thus causes a significant
increase in the drag coefficient.

A critical Reynolds number Rec for vortex shedding is defined as the value at which
the steady wake becomes unstable (sustained wake oscillation begins) after the initial
transition period. It was found that Rec varies with the dimensionless fibre modulus
and length. It is 82 ± 5 by the method of bisection for the values of K̂b and L̂ used
for this set of simulations. The vortex shedding frequency is not sensitive to Re in the
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Figure 4. Averaged drag coefficient C̄d versus Reynolds number Re. The drag coefficient
varies very slowly with Reynolds number (C̄d is nearly a constant) for Re between 200 and
800, and increases rapidly when Re gets smaller.

range (160, 800) where vortex shedding is obvious. It is roughly a constant equal to
75. Non-dimensionalized by V0/L, the dimensionless vortex shedding frequency fvs is
approximately 1.2.

Based on the sequence of simulations with Re range [30, 800], we may conclude
that while the Reynolds number has significant influence on the structure of shed
vortices, it has little influence on the vortex shedding frequency and the averaged
drag coefficient (C̄d) for Re in (200, 800).

3.2. Influence of dimensionless flexure modulus

A series of simulations with varying flexure modulus (K̂b) was performed to explore its
influence on the vortex shedding and drag coefficient. All other parameters were kept
the same. The value of K̂b varied from 0.1037 to 2.89 × 10−4. The other dimensionless
parameters were: Re = 247.5, L̂ =0.37, Fr = 27.83, K̂s = 2.69 × 104. The inflow speed
was V0 = 300 cm s−1, the fibre was 3.3 cm long. See figure 5 for four typical simulation
results with different flexure modulus. From this figure we see that the flexure modulus
has a significant influence on the structure of shed vortices. As K̂b decreases, the fibre
becomes more flexible. It bends and is streamlined more easily. The wake behind the
fibre narrows and the vortices shed look quite different. As K̂b decreases, the shed
vortices are approximately aligned with the mainstream flow at first, then become
nearly perpendicular to the flow, and finally return to the state of being aligned
with the flow. Figure 6 plots the drag coefficient versus time and the position of the
fibre. As the flexure modulus decreases between 0.1037 and 1.44 × 10−3 fibre vibration
becomes more violent. Consequently the Cd–t curve becomes more oscillatory. When
the flexure modulus is further decreased, the fibre becomes more aligned with the
flow and less fibre oscillation is seen. Consequently the Cd–t curve is less oscillatory.
This may be explained as follows. To oscillate in this situation (the majority of the
fibre is almost parallel to the mainstream flow), the fibre has to displace more fluid
with larger momentum in the vertical direction (y-component of momentum). This
restricts the motion of the fibre. Therefore, the fibre vibrates in a narrower range
and the Cd–t curve is less oscillatory. Note that the drag coefficient as a function of
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(a) (b) (c) (d)

Figure 5. Visualization of the flow and vortical field at dimensionless time 30. The upper
panels are the instantaneous positions of fluid markers and the lower panels are the vorticity

contours. The value of K̂b is (a) 2.89 × 10−2, (b) 7.21 × 10−3, (c) 1.44 × 10−3, and (d) 2.89 × 10−4.

time monotonically decreases as the flexure modulus decreases as shown in the top
panels of figure 6 (see Zhu & Peskin 2007 for a detailed Cd–K̂b plot). This is probably
because the shape drag dominates the total drag and apparently it becomes smaller
the fibre gets more and more aligned with the mainstream flow, due to the decrease
in flexure modulus.

Figure 7(a) plots the dimensionless vortex shedding frequency fvs versus
dimensionless bending modulus K̂b; panel (b) is a log-log plot. The data on the log-log
scale is best fitted by the line y = –0.14x–0.77. This indicates that fvs decreases as

a power-law function of K̂b in the range (10−4, 0.1), i.e. fvs ∼ K̂b

−0.14
. This may be

qualitatively explained as follows: the smaller the K̂b, the more flexible the fibre, as a
consequence the fibre is more aligned with the mainstream flow, and thus the vortices
formed and attached to the fibre is washed away more easily by the mainstream flow.

Figure 8 plots on a log-log scale the critical Reynolds number for vortex shedding
Rec (defined as in § 1) as a function of dimensionless bending modulus K̂b. The data
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Figure 6. The drag coefficient and position of the fibre at four different values of the
dimensionless bending rigidity K̂b . The upper panels plot the drag coefficient as a function of
time and the lower panels plot the corresponding position of the fibre. The dotted and solid
lines are the fibre positions before and after it reaches the ‘quasi-steady’ state, respectively.
The thickness of the solid lines (many lines overlap) represents the fibre oscillation range. The
value of K̂b is (a) 2.89 × 10−2, (b) 7.21 × 10−3, (c) 1.44 × 10−3, (d) and 2.89 × 10−4.
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Figure 7. Dimensionless vortex shedding frequency fvs versus dimensionless bending modulus
K̂b. (a) fvs as a function of K̂b; (b) a log-log plot of the data. The line y =–0.14x–0.77 fits the

data best in the least squares sense. This shows that fvs decreases approximately as K̂b

−0.14

which is valid for K̂b in (10−4, 10−1).
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Figure 8. A log-log plot of critical Reynolds number Rec for vortex shedding versus dimen-
sionless bending modulus K̂b . The critical Reynolds number decreases as the dimensionless
bending modulus increases. The best-fitting line by the least squares is y = − 0.11x + 4.1. The
data of Rec contain an error of ±5.

are best fitted by the line y = − 0.12x +4.1 in the least squares sense which indicates
that the Rec decreases approximately in a power law with K̂b in the range (10−4, 0.1)

i.e. Rec ∼ K̂b

−0.12
. Rec is determined by the bisection method and has an error of ±5.

At first glance the above two results seem to be contradictory. One would expect
that an increase of vortex shedding frequency as K̂b becomes smaller would indicate
vortex shedding becomes easier as K̂b decreases, and thus the critical Reynolds
number should decrease as K̂b decreases. However this is not true according to our
simulations. The reason is as follows: Rec is defined as the minimum Reynolds number
that causes sustained oscillation of the wake. As K̂b decreases the fibre becomes more
aligned with the mainstream flow and represents a smaller and smoother obstacle to
the flow. Therefore the wake becomes narrower and self-sustained oscillation becomes
more difficult (the narrower wake is constrained on both sides by widened mainstream
flow with greater momentum along the y-direction).

Based on the sequence of simulations with K̂b in [2.89 × 10−4, 0.1037], it may be
concluded that the fibre dimensionless flexure modulus has a significant influence on
the vortex shedding, the fibre vibration, and the Cd–t curve. When K̂b increases in
the above range, both fvs and Rec decrease approximately as power laws in K̂b.

3.3. Influence of dimensionless fibre length

To study the influence of the dimensionless fibre length on vortex shedding, a group
of simulations with different channel width W were performed. W ranged from 2 to
9 cm. All the other dimensional parameters were kept the same for all simulations in
the group: L =1.6 cm, V0 = 200 cm s−1, ν = 2.1333 cm2 s−1, Kb = 0.25 erg cm. The four
typical cases are depicted in figure 9. The dimensionless fibre length L̂ for these four
cases was 0.1778, 0.4, 0.6 and 0.8. The corresponding Reynolds number was 150, the
dimensionless flexure modulus was 0.005086, Fr was 25.51, and K̂s was 1.25 × 107.

Figure 9 demonstrates that the L̂ has a significant influence on vortex shedding.
As L̂ increases in (0.17, 0.8), the number of shed vortices increases (i.e. the shedding
frequency increases). The shed vortices are detached from each other initially, but
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(a) (b) (c) (d)

Figure 9. Visualization of vortical field: the vorticity contours for four different

dimensionless fibre length L̂ at dimensionless time 30, (a) 0.1778, (b) 0.4, (c) 0.6, (d) 0.8.

become somewhat attached to each other as L̂ increases. The wake zone becomes
narrower and the shed vortices directly interact with the boundary layers as they are
carried away downstream.

Figure 10 plots the drag coefficient as a function of time and the position of the fibre
at the ‘quasi-steady’ state. With the increase of L̂, the opening of the fibre contracts
gradually and it becomes more aligned with the flow (although K̂b was fixed). The
height of the Cd–t curve increases slightly with the increase of L̂. The degree of
oscillation in the Cd–t curve is roughly the same. Figure 11 plots the averaged drag
coefficient C̄d versus L̂. It is interesting to notice that the averaged drag coefficient
(after Tqs) is an increasing function of the dimensionless fibre length. One may expect
that as W decreases (i.e. L̂ increases), the fibre becomes more aligned and streamlined
with the main flow: thus the drag should decrease gradually in this case (notice
that Re is constant). However our simulation result suggests the opposite which may
be explained as follows: as L̂ increases, the boundary layers on the channel entry
portion (above the tethered point of the fibre) on the two sidewalls have almost the
same thickness (see figure 9). Therefore the fraction of the boundary layers’ thickness
with respect to the channel width increases, and the fraction of the channel width
available to the freely flowing fluid (outside the boundary layers) decreases. Because
the inlet flow speed is the same, the oncoming flow towards the fibre possesses a
greater ‘effective speed’ than the inlet speed. Hence the fibre experiences more drag as
L̂ increases. This effect seems to reach a maximum when L̂ reaches approximately 0.6.
After that the Cd–L̂ curve levels off. This also explains why the fibre gets more aligned
with the mainstream flow as L̂ increases, as shown in the bottom panels of figure 9.
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Figure 10. The drag coefficient and position of the fibre at four different values of fibre
length. The upper panels plot the drag as a function of time and the lower panels plot the
corresponding position of the fibre. The dotted and solid lines are the fibre positions before
and after it reaches the ‘quasi-steady’ state, respectively. The thickness of the solid lines (many
lines overlap) represents the fibre oscillation range. The value of L̂ is (a) 0.1778, (b) 0.4, (c)
0.6, (d) 0.8.
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Figure 11. The averaged drag coefficient C̄d versus dimensionless fibre length L̂.
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Figure 12. Dimensionless vortex shedding frequency fvs versus dimensionless fibre length L̂.
The data show that fvs increases as L̂ increases. The line fitting the data best in the least
squares sense is y = 0.79x +0.73.
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Figure 13. Critical Reynolds number Rec versus dimensionless fibre length L̂. The Rec

increases as L̂ increases. The best-fitting line by the least squares is y = 89x + 28.

Figure 12 plots the dimensionless vortex shedding frequency fvs versus dimension-
less fibre length L̂. fvs increases with L̂ in (0.18, 0.75). As already mentioned above, as
L̂ increases, the effective K̂b decreases because of the greater effective incoming flow
speed. Therefore fvs increases with L̂. The line fvs = 0.79L̂ + 0.73 fits the data best in
the sense of the least squares, which indicates that the dimensionless vortex shedding
frequency increases approximately linearly with the dimensionless fibre length.

Figure 13 plots the critical Reynolds number Rec versus dimensionless fibre length
L̂. It is seen that Rec increases with L̂ in (0.18, 0.75). The line fitting the data by
the least squares is Rec = 89L̂ + 28. The data for Rec has an error of ±5. A greater
L̂ means a narrower flow channel, which imposes a stricter constraint on the wake
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behind the fibre through its two rigid sidewalls. Therefore it becomes more difficult
for the wake to oscillate. This may explain why Rec is a increasing function of L̂.

Basing on the group of simulations with varying dimensionless fibre length, we
conclude that the fibre length L̂ has a significant influence on the vortex shedding
and drag coefficient. Rec and fvs both increase nearly linearly with the increase of L̂.
The averaged drag coefficient C̄d increases with L̂ at first and then becomes roughly
constant.

4. Summary and discussion
Three sets of simulations have been designed and performed to investigate

the influences of the Reynolds number, fibre dimensionless flexure modulus and
dimensionless length on the vortex shedding and drag coefficient of the fibre.
Our simulations have demonstrated the discernible differences in shed vortices and
the consequential fibre vibration and oscillation in drag coefficient. From these
simulations, we draw the following conclusions, within the ranges of parameters used
in our simulations. (i) The Reynolds number has a significant influence on vortex
shedding and fibre vibration. However, the Reynolds number has little influence on
the averaged drag coefficient C̄d for Re in [200, 800]. It appears that the Cd–t curve
becomes somewhat less oscillatory as Re increases. (ii) The fibre dimensionless flexure
modulus has a significant influence on vortex shedding, fibre vibration and the Cd–t

curve. As K̂b increases, both the dimensionless vortex shedding frequency fvs and
the critical Reynolds number Rec decrease, approximately in the form of power laws.
(iii) The dimensionless fibre length has a significant influence on vortex shedding,
fibre vibration and the Cd–t curve. Rec and fvs each increases linearly with L̂. C̄d

increases with L̂ at first and then becomes insensitive to L̂.
Williamson & Govardhan (2004) classified vortex shedding from an elastically

mounted cylinder into three major patterns: the 2S mode (two single vortices per
cycle), the 2P mode (two vortex pairs per cycle) and the P + S mode (a vortex pair
and a single vortex per cycle). Our simulations show that vortex shedding from a
flexible fibre with the mid-point tethered belongs to the 2S mode. Neither a 2P mode
nor a P+ S mode was found. Compared to the vortex shedding seen in the figure 2 of
Alben et al. (2004), vortex shedding from our simulations appears different, especially
in the wake away from the fibre. Perhaps this is because of the significant difference
in Re, which has an important influence on vortex shedding, as illustrated in figure 2
of this paper. The vortex shedding reported here is similar to those observed from a
flapping filament in Zhu (2001) and Zhu & Peskin (2002), from two in-phase-flapping
filaments in Zhu & Peskin (2003), and from a stationary rubber loop in Jung et al.
(2006). But it is different from the vortex shedding from two anti-phase-flapping
filaments in Zhu & Peskin (2003) (none of the above modes), from the flapping
rubber loop in Jung et al. (2006) (2P mode), and from the side-by-side cylinders in
Wang et al. (2005) (very complicated).

According to our simulations, it appears that the degree of oscillation in the Cd–t

curve lessens somewhat as Re increases while the fibre vibration range widens. In the
laboratory experiment by Alben et al. (Re between 2000 and 40 000), no oscillation
in the drag or drag coefficient was found. Does the oscillation in drag coefficient
completely disappear when Re becomes sufficiently high? This seems to be possible
based on our simulations at lower Re. The current Navier–Stokes solver used in the
IB method is not accurate for very high-Re flows. At this point we cannot confirm
this conjecture, but it seems to be counter-intuitive and may deserve further research.



232 L. Zhu

–0.5 0 0.5

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

η = 5

5

12
20 12

20

Figure 14. Comparison of averaged fibre shapes from our simulations with those in the work
of Alben et al. (2002). The x and y coordinates are non-dimensionalized by the fibre length
(1.95 cm). The three solid lines are results from Alben et al. (2002). The values of η for the
solid lines are 5, 12, 20 from top to bottom, respectively. Note that the experimental results and
numerical results in Alben et al. (2002) are almost not distinguishable for the three values of η
and only the numerical results are shown here. The other three lines are our simulation results.
The value for η is 5 for the dashed line, 12 for the dash-dotted line, and 20 for the dotted line.
The relation between η and K̂b is K̂b = 1/2η2. The Reynolds number for the three simulations
is 600 which is approximately 100 times less than the experimental value. This may explain
the quantitative differences shown in the figure. Notice that each curve from Alben et al. lies
above the corresponding curve from our simulation. See the bottom panels of Figure 2 for the
influence of Re on fibre shape.

According to our simulations at lower Re, the fibre–fluid problem becomes unsteady
when vortex shedding occurs, and the fibre vibration range increases with Re. In Alben
et al. (2002, 2004) where Re was significantly higher, the flow was steady and the
fibre assumes a definite shape and position for a given set of flow parameters. The
averaged shape and position of the fibre at the ‘quasi-steady’ state in our simulation
are compared in figure 14 with those (both experimental and numerical) reported in
figure 3(a) of Alben et al. (2002) for three cases (η = 6, 15, 20)† where the experimental
and numerical results in Alben et al. (2002) agreed extremely well. It is seen that
although the fibre shapes in our simulations were similar to those in Alben et al.
(2002) obvious quantitative differences exist. Notice that the results in Alben et al.
(2002) are all above our averaged simulation results. The discrepancy between our
results and Alben et al.’s may be explained by the fact that Re in our simulations
is lower by two orders of magnitude. (It appears that the higher Re, the wider the
opening of the fibre. See figure 3.) For more comparisons with Alben et al.’s work
(e.g. drag), see Zhu & Peskin (2007).

Presumably the oscillation in the Cd–t curve is caused by the vibration of the
fibre which is induced by vortex shedding. It is expected that there exist functional
relationships among the frequencies of oscillation in Cd , in fibre vibration and vortex

† η is defined as
√

1
2
ρ0L3V 2

0 /Kb in Alben et al. (2002). It measures the relative importance of

fluid kinetic energy and elastic potential energy. The relationship between η and K̂b is K̂b = 1/(2η2).
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Figure 15. The simulation results where the FFT analysis on Cd–t data reveals a single
distinct frequency. The parameters used for this simulation were L = 3.3 cm, Kb = 2.8 erg cm,

ν = 4 cm2 s−1, V0 = 212.5 cm s−1. (The dimensionless parameters are: Re = 175, K̂b = 0.0065,
L̂ = 0.3667, Fr = 14, K̂s = 5.369 × 106.) (a) The positions of fluid markers. (b) The vorticity
contours. (c) The drag coefficient versus time. (d) The positions of the fibre. The oscillation in
Cd–t has a distinct frequency of 125 Hz. The vortex shedding frequency is 75 Hz.

shedding. However, the fibre vibration is more complicated than expected. Unlike
the ‘simple’ periodic up-and-down flapping with a single frequency of a flexible rod
supported at the middle point, the flexible fibre vibrates in a more complicated
fashion in the flowing fluid. Although not shown here, from an animation based
on the simulation, it is seen that small-amplitude ‘irregular’ vibrations occur almost
everywhere on the fibre except near the tethered point. According to our simulations
the vibration induced by vortex shedding is always small (in terms of amplitude
compared to its length) and the lock-in phenomenon described in Williamson &
Govardhan (2004) was not found. It seems that the small-amplitude vortex-shedding-
induced vibration is ‘lost’ in the background ‘noise’ (the localized irregular motions).
This makes the fibre motion difficulty to quantify: only the range of the fibre position
is given here. Fibre flexibility and interaction with the local fluid flowing past are
supposed to be responsible for the complexity of fibre motion. Consequentially, FFT
analysis performed on the Cd–t data revealed distinct frequencies only in a few cases.
(It is not yet clear what is the underlying reason for this.) However, no quantitative
relationship between the frequency and vortex shedding frequency was found for these
cases. One such example is given below. Figure 15 shows the results for a simulation
with a 3.3 cm fibre with bending modulus 2.8 erg cm in a flowing fluid with kinematic
viscosity 4 cm2 s−1. The inflow speed was 212.5 cms−1. (The dimensionless parameters
are: Re = 175, K̂b =0.0065, L̂ = 0.3667, F r =14, K̂s = 5.369 × 106.) Figure 15(a) plots
the positions of fluid markers at T = 26. Figure 15(b) plots the vorticity contours at
the same instant. Figure 15(c) plots the Cd–t curve. Figure 15(d) plots the fibre shape
and position with time. See the caption for details. Application of FFT on the Cd–t

data reveals a single distinct frequency, approximately 125, which is supposed to be
the oscillation frequency in Cd . The vortex shedding frequency for this case was found
to be 75.
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